Найти площадь трапеции, диагонали которой равны 13 и 11, а средняя линяя 10
Найти площадь трапеции, диагонали которой равны 13 и 11, а средняя линяя 10
Ответ(ы) на вопрос:
Гость
Трапеция АВСД.
АД нижнее основание;
ВС верхнее основание трапеции;
АС=11; ВД=13;
m=10 средняя линия;
Сделаем дополнительное построение.
Из вершины С проведем отрезок СМ параллельно ВД,
до пересечения с продолжением стороны АД.
Четырехугольник ВСМД - параллелограмм, так как
ВС параллельна ДМ и ВД параллельна СМ по построению.
Значит, СМ=ВД=13; ВС=ДМ;
Из вершины С опустим перпендикуляр СК на АД.
СК -это высота трапеции АВСД и треугольника АСМ.
Площадь треугольника АСМ равна
S(АСМ)=СК*АМ/2;
АМ=АД+ДМ=АД+ВС;
m=(АД+ВС):2;
АД+ВС=2*m=2*10=20;
АМ=АД+ВС=20;
S(АСМ)=СК*20/2=10*СК;
Площадь трапеции АВСД равна
S(АВСД)=СК*m=10*CК;
Значит, S(АВСД)=S(АСМ);
В треугольнике АСМ АС=11; СМ=13; АМ=20;
Площадь найдем по формуле Герона:
полу периметр р=(11+13+20):2=22;
S²=22*(22-11)*(22-13)*(22-20)=22*11*9*2;
S=√2*11*11*9*2=2*3*11=66;
ответ: 66
Не нашли ответ?
Похожие вопросы