Очень очень срочно!!!!!!                         1.Около треугольника MNP описана окружность с центром O. Найдите угол NMP, если угол NOP равен 42 градусам. 2.Окружности радиусов 13 и 20 с центрами О1 и О2 соответственно касают...

Очень очень срочно!!!!!!                          1.Около треугольника MNP описана окружность с центром O. Найдите угол NMP, если угол NOP равен 42 градусам.  2.Окружности радиусов 13 и 20 с центрами О1 и О2 соответственно касаются внешним образом в точке С. АО1 и ВО2 – параллельные радиусы этих окружностей, причем угол АО1О2 равен 60°. Найдите АВ.   3. В прямоугольном параллелепипеде АВСDА1В1С1D1 известны ребра АВ=4, АD=3, АА1=7. Точка О принадлежит ребру ВВ1 и делит его в отношении 3:4, считая от вершины В. Найдите площадь сечения параллелепипеда плоскостью, проходящей через точки А, О и С1. 
Гость
Ответ(ы) на вопрос:
Гость
Угол NMP - вписанный в окружность, а угол NOP - центральный. Центральный угол равен дуге, на которую он опирается, значит дуга  NP  42 градуса.  вписанный угол равен половине дуги, на которую он опирается. Ответ 21 градус. 2. Через точку А провести прямую параллельную О1 О2. Имеем параллелограмм стороны 33 и 13 и тупоугольный треугольник с углом 120 градусов. Одна сторона 33, другая 20-13=7 Применяем теорему косинусов АВ²=33²+7²-2·33·7·соs 120= 1369. Ответ √1369
Не нашли ответ?
Ответить на вопрос
Похожие вопросы