Очень прошу! через X......диагональ прямоугольника в 2 раза больше одной из его стоон. Найдите углы между диагоналями.

Очень прошу! через X......диагональ прямоугольника в 2 раза больше одной из его стоон. Найдите углы между диагоналями.
Гость
Ответ(ы) на вопрос:
Гость
Диагонали прямоугольника точкой  пересечения делятся пополам.  Если одна сторона х, то половина диагонали - тоже х. Сторона и две половины диагоналей образуют треугольник с равными сторонами, т.е. правильный треугольник.  В правильном треугольнике все углы равны 180°:3= 60°. Следовательно, угол между диагоналями равен 60°, а смежный с ним 180°-60°=120°. --------- Или ( если через х решать, и это будет дольше): Диагональ прямоугольника делит его на 2 равных прямоугольных треугольника, в которых гипотенуза в два раза больше одного катета. Пусть этот катет АВ=х, а противолежащий ему угол ВСА = α Тогда гипотенуза АС=2х Синус угла, противолежащего известному катету, равен отношению катета к гипотенузе. sinα=х/2х=0,5 Это синус угла 30°  Диагонали прямоугольника при пересечении  делятся пополам и со сторонами образуют равнобедренные треугольники. Обозначим точку пересечения диагоналей О. Тогда в ∆ ВОС  стороны ВО=СО, ∠ОВС=∠ОСВ=30°, и ∠ВОС=120° Смежный с ним ∠ВОА=180°-120°=60°
Не нашли ответ?
Ответить на вопрос
Похожие вопросы