Основанием прямой призмы ABCDA1B1C1D1является параллелограмм ABCD со сторонами 6 см и 6 корней из 3 и углом 150 градусов. Диагональ B1D призмы образует с плоскостью основания угол в 60 градусов. Найдите площадь полной поверхнос...

Основанием прямой призмы ABCDA1B1C1D1является параллелограмм ABCD со сторонами 6 см и 6 корней из 3 и углом 150 градусов. Диагональ B1D призмы образует с плоскостью основания угол в 60 градусов. Найдите площадь полной поверхности призмы,
Гость
Ответ(ы) на вопрос:
Гость
Я в качестве угла величиной 150° принял угол(ABC) , т.е .  угол(ABC) =α =150°; обозначим  AB =а=6 см  и  BC=6√3см  ,высота  BB₁=H  , тогда площадь полной поверхности призмы будет S = 2absinα +2(a+b)*H=2*6*6√3in150° +2(6+6√3)*H  = = 2*6*6√3in(180°-30°) +12(1+√3)*H  = 2*6*6√3in30° +12(1+√3)*H =  =2*6*6√3*1/2 +12(1+√3)*H = 36√3+12(1+√3)*H остатся  определить высоту призмы H Из  Δ B₁BD : H =BD*tq30°=sqrt(a² +b² - 2abcos30° )*tq30° =sqrt(6²+(6√3)² -2*6*6√3*√3/2)*√3= = 6*√3/3 = 2√3  поэтому окончательно получаем S = 36√3+12(1+√3)*2√3  = 72 +60√3  (см²)  или 12(6+5√3)
Не нашли ответ?
Ответить на вопрос
Похожие вопросы