Ответ(ы) на вопрос:
Гость
3.
[latex] \left \{ {{x+y=5} \atop {(x-1)(y-1)=2}} \right. \\ \left \{ {{x=5-y} \atop {(5-y-1)(y-1)=2}} \right. \\ \left \{ {{x=5-y} \atop {(4-y)(y-1)=2}} \right. \\ \left \{ {{x=5-y} \atop {y^2-5y+6=0}} \right. \\ [/latex]
y1=3, x1=2
y2=2, x2=3
5. Так как оба выражения в квадрате, то они не могут быть отрицательны, следовательно, чтобы всё выражение было равно нулю, они оба должны быть равны нулю.
Получаем систему:
[latex]\left \{ {{x^2-y^2-4=0} \atop {x+y+5=0}} \right. [/latex]
x=-y-5
(-y-5)^2-y^2-4=0
y^2+10y+25-y^2-4=0
10y=-21
y=-2,1
x=-2,9
Не нашли ответ?
Похожие вопросы