Пассажир вышел из остановившегося поезда и пошел вперед по ходу поезда со скорост
Пассажир вышел из остановившегося поезда и пошел вперед по ходу поезда со скоростью v = 4,5 км/ч. Когда пассажир дошел до кабины машиниста электровоза, поезд тронулся с места и стал двигаться равноускоренно, а пассажир продолжил движение с прежней скоростью. Найдите скорость u поезда в тот момент времени, когда кабина машиниста вновь поравняется с пассажиром
Ответ(ы) на вопрос:
Гость
I. Решим на пальцах:
Средняя скорость в равноускоренном движении строго равна срежнеарифметическому значению краевых скоростей на заданном участке.
Поскольку кабина и пассажир уходят из одной общей точки одновременно и встречаются в другой общей точке одновременно, то, значит, их средние скорости равны!
Cредняя скорость поезда равна половине его конечной, поскольку v(ср) = ( 0 + u) / 2 = u/2. А средняя скорость пассажира равна его собственной скорости. Итак, v = u/2 ==> u = 2v = 9 км/ч.
II. Решим строго
Уравнение движения пассажира, для координаты, отсчитываемой от точки совмещения его с кабиной:
xп(t) = vt ;
Уравнение движения кабины поезда, для координаты, отсчитываемой от точки совмещения кабины с пассажиром:
xк(t) = at²/2 ;
Найдём точки совмещения этих уравнений, т.е. когда описываемые ими движения «встречаются»:
xк(t) = xп(t) ;
vt = at²/2 ;
t = 2v/a ;
При равноускоренном движении, скорость кабины описывается выражением: u = at. тогда u = a * 2v/a = 2v = 9 км/ч.
Не нашли ответ?
Похожие вопросы