Площадь диагонального сечения в правильной усеченной четырехугольной пирамиды равна 20 см квадратных, а стороны основания 2 см и 8 см. Найдите ее высоту. а) 4√2 см, б) 3√2 см, в)другой ответ(какой тогда?)
Площадь диагонального сечения в правильной усеченной четырехугольной пирамиды равна 20 см квадратных, а стороны основания 2 см и 8 см. Найдите ее высоту. а) 4√2 см, б) 3√2 см, в)другой ответ(какой тогда?)
Ответ(ы) на вопрос:
Площадь диагонального сечения - трапеция, где основаниямы трапеции есть диагонали соответствующих оснований пирамиды диагональ нижнего основания пирамиды равна d1=√2*a=8√2 верхнего d2=√2*b=2√2 площадь трапеции равна S=(a+b)*h/2 В нашем случае 20=(2√2+8√2)*h/2 40=10√2*h => h=40/10√2=4/√2=√8=2√2
у меня так же..2√2 если речь идет о высоте диагонального сечения то оно равно 2√2 если о высоте пирамиды , то: a/a1 = h/h1 (в усеченной пирамиде) 8/2 = 2√2/h1 , h1 = √2/2 вся высота равна h1+h2 = √2/2 = 2√2 = 5√2/2
Не нашли ответ?
Похожие вопросы