Площадь основания правильной четырехугольной пирамиды равна 50 см, боковое ребро - 13 см. Найдите высоту пирамиды. А) 10 см Б) 12 см В) 5 см Г) 5 квадратов из 2

Площадь основания правильной четырехугольной пирамиды равна 50 см, боковое ребро - 13 см. Найдите высоту пирамиды. А) 10 см Б) 12 см В) 5 см Г) 5 квадратов из 2
Гость
Ответ(ы) на вопрос:
Гость
Б) 12 см Допустим, у нас четырехугольная пирамида, в основании которой лежит квадрат ABCD. Высота - SO. Точка O - точка пересечения диагоналей. 1. Основание - квадрат. Площадь квадрата можно найти по формуле  [latex] S=\frac{d^{2} }{2} [/latex], где d-диагональ. [latex]50= \frac{d^{2} }{2} [/latex] [latex]d^{2} =100 \\ d=10[/latex] см 2. Диагонали в квадрате равны и точкой пересечения делятся пополам - OA=OB=OC=OD. Находим любой из перечисленных отрезков.  10/2=5 см 3. Рассмотрим треугольник SOC - прямоугольный, т.к. SO - высота. Мы знаем боковую грань (гипотенуза) и катет (половина диагонали). Можем найти второй катет, т.е. высоту. По теореме Пифагора: SC²=SO²+OC² 13²=SO²+5² SO²=169-25 SO²=144 SO=12 см
Не нашли ответ?
Ответить на вопрос
Похожие вопросы