Площадь поверхности куба равна площади поверхности шара.Найдите отношение объемов куба и шара
Площадь поверхности куба равна площади поверхности шара.Найдите отношение объемов куба и шара
Ответ(ы) на вопрос:
ребро куба - х, тогда Sполн. пов.куба=х*х*6=6х^2 см2 Sшара= 4 п R^2=6х^2, отсюда выразим х: [latex]x^2=\frac{4*\pi*R^2}{6}\\x^2=\frac{4*\pi*R^2}{\sqrt6}[/latex] тогда Vкуба=[latex]\frac{4*\pi*R^2}{\sqrt6}*\frac{4*\pi*R^2}{\sqrt6}*\frac{4*\pi*R^2}{\sqrt6}=\frac{64*\pi^3*R^3}{6\sqrt6}[/latex] Vшара=[latex]\frac{4*\pi*R^3}{3}[/latex] [latex]\frac{Vkuba}{Vshara}=\frac{64*\pi^3*R^3}{6\sqrt6}*\frac{3}{4*\pi*R^3} =\frac{16*\pi^2}{2\sqrt6} =\frac{8*\pi^2}{\sqrt6} [/latex] объём куба в [latex]\frac{8*\pi^2}{\sqrt6} [/latex] раз больше обёма шара
Не нашли ответ?
Похожие вопросы