Помогите плиз))))Шар, площадь поверхности которого 100п, вписана прямая треугольная призма АBCA1B1C1, такая, что АВС - прямоугольный треугольник с прямым углом С. Центр шара находится на расстоянии 3 см от каждого основанияНайд...
Помогите плиз))))
Шар, площадь поверхности которого 100п, вписана прямая треугольная призма АBCA1B1C1, такая, что АВС - прямоугольный треугольник с прямым углом С. Центр шара находится на расстоянии 3 см от каждого основания
Найдите площадь сечения шара плоскостью АВС
Ответ(ы) на вопрос:
Гость
Находим радиус шара из его площади: S = 4πR².
Отсюда R = √(S/4π) = √(100π/4π) = √25 = 5 см.
Определяем радиус сечения шара плоскостью АВС с учётом того, что центр описанной окружности около прямоугольного треугольника находится на середине гипотенузы:
R1 = √(R²-3²) = √5²-3²) = √(25-9) = √16 = 4 см.
Искомая площадь сечения шара плоскостью АВС равна:
S = πR1² = 16π см².
Не нашли ответ?
Похожие вопросы