Помогите, пожалуйста! 1. log2 sin x/2 меньше -1 2. log1/2 cos 2x больше 1

Помогите, пожалуйста! 1. log2 sin x/2 < -1 2. log1/2 cos 2x > 1
Гость
Ответ(ы) на вопрос:
Гость
Решение log₂ sin(x/2) < - 1 ОДЗ: sinx/2 > 0 2πn < x/2 < π + 2πn, n ∈ Z 4πn < x < 2π + 4πn, n ∈ Z sin(x/2) < 2⁻¹ sin(x/2) < 1/2 - π - arcsin(1/2) + 2πn < x/2 < arcsin(1/2) + 2πn, n ∈ Z - π - π/6 + 2πn < x/2 < π/6 + 2πn, n ∈ Z - 7π/6 + 2πn < x/2 < π/6 + 2πn, n ∈ Z - 7π/3 + 4πn < x < π/3 + 4πn, n ∈ Z 2)  log₁/₂ cos2x > 1 ОДЗ: cos2x > 0 - arccos0 + 2πn < 2x < arccos0 + 2πn, n ∈ Z - π/2 + 2πn < 2x < π/2 + 2πn, n ∈ Z - π + 4πn < x < π + 4πn, n ∈ Z так как 0 < 1/2 < 1, то cos2x < 1/2 arccos(1/2) + 2πn < 2x < 2π - arccos(1/2) + 2πn, n ∈ Z π/3 + 2πn < 2x < 2π - π/3 + 2πn, n ∈ Z π/6 + πn < x < 5π/6 + πn, n ∈ Z
Не нашли ответ?
Ответить на вопрос
Похожие вопросы