Помогите пожалуйста с задачей по геометрии. Дано: ABCD-параллелограмм BE=MD Доказать: AECM-параллелограмм

Помогите пожалуйста с задачей по геометрии. Дано: ABCD-параллелограмм BE=MD Доказать: AECM-параллелограмм
Гость
Ответ(ы) на вопрос:
Гость
1) Четырехугольник является параллелограммом по определению, если у него противолежащие стороны параллельны, то есть лежат на параллельных прямых. ABCD — параллелограмм, если AB ∥ CD, AD ∥ BC. Для доказательства параллельности прямых используют один из признаков параллельности прямых, чаще всего — через внутренние накрест лежащие углы. Для доказательства равенства внутренних накрест лежащих углов можно доказать равенство пары треугольников. это могут быть пары треугольников 1) ABC и CDA, 2) BCD и DAB, 3) AOD и COB, 4) AOB и COD. 2) Четырехугольник является параллелограммом, если у него диагонали в точке пересечения делятся пополам. Чтобы использовать этот признак параллелограмма, надо сначала доказать, что AO=OC, BO=OD. 3) Четырехугольник является параллелограммом, если у него противолежащие стороны параллельны и равны. Чтобы использовать этот признак параллелограмма, надо сначала доказать, что AD=BC и AD ∥ BC (либо AB=CD и AB ∥ CD). Для этого можно доказать равенство одной из тех же пар треугольников. 4) Четырехугольник — параллелограмм, если у него противоположные стороны попарно равны. Чтобы воспользоваться этим признаком параллелограмма, нужно предварительно доказать, что AD=BC и AB=CD. Для этого доказываем равенство треугольников ABC и CDA или BCD и DAB. Это — четыре основных способа доказательства того, что некоторый четырехугольник — параллелограмм. Существуют и другие способы доказательства. Например, четырехугольник — параллелограмм, если сумма квадратов его диагоналей равна сумме квадрату сторон. Но, чтобы воспользоваться дополнительными признаками, надо их сначала доказать. Доказательство с помощью векторов или координат также опирается на определение и признаки параллелограмма, но проводится иначе. Об этом речь будет вестись в темах, посвященных векторам и декартовым координатам.
Не нашли ответ?
Ответить на вопрос
Похожие вопросы