Ответ(ы) на вопрос:
Гость
1. a) [latex] \sqrt{1 \frac{7}{9} }-4= \sqrt{ \frac{16}{9} } -4= \frac{4}{3} -4= \frac{4}{3}- \frac{12}{3}=- \frac{8}{3} =-2 \frac{2}{3} [/latex]
б) [latex] \sqrt{7,2} * \sqrt{20}= \sqrt{7,2*20}= \sqrt{144}= 12[/latex]
в) [latex] \frac{ \sqrt{216} }{ \sqrt{6} } = \sqrt{ \frac{216}{6} } = \sqrt{36}=6 [/latex]
г) [latex] \sqrt{5^4*3^2}=5^2*3=25*3=75 [/latex]
2. a) [latex]4 \sqrt{20}- \sqrt{125}= 4 \sqrt{4*5}- \sqrt{25*5}=4*2 \sqrt{5}-5 \sqrt{5}=3 \sqrt{5} [/latex]
б) [latex](3 \sqrt{6}+ \sqrt{12}) \sqrt{3}=3 \sqrt{6} *\sqrt{3} + \sqrt{12}* \sqrt{3} =3 \sqrt{18} + \sqrt{36}= [/latex]
[latex]=3 \sqrt{9*2} +6=3*3 \sqrt{2}+6=9 \sqrt{2} +6[/latex]
в) [latex](5- \sqrt{2})^2=25-10 \sqrt{2}+2=27-10 \sqrt{2} [/latex]
3. a) [latex]12 \sqrt{3}= \sqrt{12^2*3}= \sqrt{144*3}= \sqrt{432} [/latex]
б) [latex]-9 \sqrt{2} =- \sqrt{9^2*2}=- \sqrt{81*2}=- \sqrt{162} [/latex]
4. [latex] \sqrt{x^2-6x+9}= \sqrt{(x-3)^2}=x-3[/latex]
2,6-3=-0,4
5. a) [latex] \frac{6- \sqrt{6}}{ \sqrt{18}- \sqrt{3} } = \frac{(6- \sqrt{6})( \sqrt{18}+ \sqrt{3}) }{( \sqrt{18}- \sqrt{3})( \sqrt{18}+ \sqrt{3}) } = \frac{6 \sqrt{18}+6 \sqrt{3}- \sqrt{6} \sqrt{18} - \sqrt{6} \sqrt{3} }{ (\sqrt{18})^2-(\sqrt{3})^2 }=[/latex]
[latex]= \frac{6 \sqrt{18}+\sqrt{36*3}- \sqrt{6*18}-\sqrt{18} }{18-3} = \frac{6 \sqrt{18} + \sqrt{108}- \sqrt{108} - \sqrt{18} }{15}= \frac{5 \sqrt{18}}{15} =\frac{ \sqrt{18}}{3} [/latex]
б) [latex] \frac{16-x}{4+ \sqrt{x}}= \frac{(4- \sqrt{x})(4+ \sqrt{x}) }{4+ \sqrt{x}}=4- \sqrt{x} [/latex]
6. [latex] \frac{4}{2 \sqrt{3}+1} - \frac{4}{2 \sqrt{3}-1} = \frac{4(2 \sqrt{3}-1)-4(2 \sqrt{3}+1)}{(2 \sqrt{3})^2-(1)^2}= \frac{4(2 \sqrt{3}-1-2 \sqrt{3}-1)}{4*3-1}= \frac{4*(-2)}{11} =- \frac{8}{11} [/latex]
Не нашли ответ?
Похожие вопросы