Помогите с геометрической прогрессией, заранее Благодарю! Баллы, + 120 WMR (рублей) на Webmoney/телефон 1) Найти q, b1, b6, bn+3 геометрической прогрессии {bn}, если: bn=[latex] \frac{3}{5^{n}} [/latex] 2) Для геометрической пр...

Помогите с геометрической прогрессией, заранее Благодарю! Баллы, + 120 WMR (рублей) на Webmoney/телефон 1) Найти q, b1, b6, bn+3 геометрической прогрессии {bn}, если: bn=[latex] \frac{3}{5^{n}} [/latex] 2) Для геометрической прогрессии {bn} найдите: (1). b1, если b5= 17,5, q= -2.5; (2). q, если b6= 25, b8= 9 3) Определить номер n, если для геометрической прогрессии q=[latex] \frac{1}{2} [/latex], b1=128, bn=1
Гость
Ответ(ы) на вопрос:
Гость
1) [latex]b_n=\frac{3}{5^n}\\\\b_1=\frac{3}{5^1}=\frac{3}{5}\\b_2=\frac{3}{5^2}=\frac{3}{25}\\q=\frac{b_{n+1}}{b_n}=\frac{b_2}{b_1}=\frac{\frac{3}{25}}{\frac{3}{5}}=\frac{3}{25}*\frac{5}{3}=\frac{1}{5}\\b_6=\frac{3}{5^6}=\frac{3}{15625}\\b_{n+3}=\frac{3}{5^{n+3}} [/latex] 2) (1) [latex]b_n=b_1*q^{n-1}\\b_1=\frac{b_n}{q^{n-1}}=\frac{b_5}{q^{5-1}}=\frac{17.5}{(-2.5)^4}=\frac{17.5}{39.0625}=0.448[/latex] (2) [latex]b_n^2=b_{n-1}*b_{n+1}\\b_7^2=b_{7-1}*b_{7+1}=b_6*b_8=25*9=225\\b_7=\sqrt{225}=15\\\\b_{n+1}=b_n*q\\q=\frac{b_{n+1}}{b_n}=\frac{b_7}{b_6}=\frac{15}{25}=\frac{3}{5}[/latex] 3) [latex]b_n=b_1*q^{n-1}\\1=128*(\frac{1}{2})^{n-1}\\(\frac{1}{2})^{n-1}=\frac{1}{128}\\(\frac{1}{2})^{n-1}=(\frac{1}{2})^7\\n-1=7\\n=8[/latex]
Не нашли ответ?
Ответить на вопрос
Похожие вопросы