При каких натуральных значениях а является верным неравенство 10/а больше а, левая часть которого неправильная дробь?

При каких натуральных значениях а является верным неравенство 10/а>а, левая часть которого неправильная дробь?
Гость
Ответ(ы) на вопрос:
Гость
[latex]\frac{10}{a}>a[/latex]  \\\умножим обе части на а   [latex]10>a^2[/latex]   [latex]a^2 < 10[/latex]   [latex]a < \sqrt{10}[/latex]   Проанализируем, то что нам известно и то что у нас получилось. Натуральные числа целые числа, которые лежат правее нуля тоесть 1,2,3... Корень из 10 меньше корня из 9. Мы знаем, что корень из 9 это 3. Мы знаем что натуральные числа начинаются с 1. Из всех вышеперечисленных фактов делаем вывод, что искомые нами значения это 1, 2, 3.   Ответ: 1, 2, 3
Не нашли ответ?
Ответить на вопрос
Похожие вопросы