При каком значении λ корни уравнения относятся как 3:2(2λ-1)x^2+(5λ+1)x+(3λ+1)=0

При каком значении λ корни уравнения относятся как 3:2 (2λ-1)x^2+(5λ+1)x+(3λ+1)=0
Гость
Ответ(ы) на вопрос:
Гость
Данное задание можно решить по теореме Виета. По данной теореме, если уравнение имеет вид ax²+bx+c=0 x₁+x₂=-b/a x₁*x₂=c/a В данном уравнении (2λ-1)x²+(5λ+1)x+(3λ+1)=0 a=2λ-1 b=5λ+1 c=3λ+1 По условию 2х₁=3х₂ х₁=1,5х₂ 1,5х₂+x₂=-(5λ+1)/(2λ-1) 1,5х₂*x₂=(3λ+1)/(2λ-1) 2,5x₂=-(5λ+1)/(2λ-1) 1.5x²₂=(3λ+1)/(2λ-1) x₂=-(5λ+1)/(2.5(2λ-1)) 1.5*(-(5λ+1)/(2.5(2λ-1))²=(3λ+1)/(2λ-1) 1.5*(5λ+1)²/2.5²=(3λ+1)*(2λ-1) 0.24(25λ²+10λ+1)=6λ²+2λ-3λ-1 6λ²+2.4λ+0.24=6λ²-λ-1 3.4λ=-1-0.24 3.4λ=-1.24 λ=-124/34 λ=-62/17 Ответ λ=-62/17
Не нашли ответ?
Ответить на вопрос
Похожие вопросы