Привидите примеры разложенин многочленов на множетели комбинацтей различных способов

Привидите примеры разложенин многочленов на множетели комбинацтей различных способов
Гость
Ответ(ы) на вопрос:
Гость
Разложение многочлена на множители комбинацией различных способов. ... неприводит к достижению цели, и для разложения многочлена на множителиприходится пользоваться их ... Пример 1 (квадрат суммы + разность квадратов). Точно  не знаю 
Гость
Часто бывает полезно преобразовать многочлен так, чтобы он был представлен в виде произведения нескольких сомножителей. Такое тождественное преобразование называется разложением многочлена на множители . В этом случае говорят, что многочлен делится на каждый из этих сомножителей. При разложении многочленов на множители применяют три основных приёма: вынесение множителя за скобку, использование формул сокращённого умножения и способ группировки. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 1.Способ вынесения множителя за скобки Вынесение общего множителя за скобку. Из распределительного закона непосредственно следует, что ac+bc=c(a+b). Здесь c является общим множителем, который можно вынести за скобку. Этим правилом можно воспользоваться для вынесения множителя за скобки. 2.Способ формул сокращённого умножения Формулы сокращённого умножения позволяют довольно эффективно представлять многочлен в форме произведения. 3.Способ группировки Сам способ группировки заключается в том, что слагаемые многочлена можно сгруппировать различными способами на основе сочетательного и переместительного законов. На практике он применяется в тех случаях, когда многочлен удаётся представить в виде пар слагаемых таким образом, чтобы из каждой пары можно было выделить один и тот же множитель. Этот общий множитель можно вынести за скобку и исходный многочлен окажется представленным в виде произведения
Не нашли ответ?
Ответить на вопрос
Похожие вопросы