Радиусы вписанной и описанной около прямоугольного треугольника окружностей равны соответсвенно 3 и 11. найдите площадь треугольника
Радиусы вписанной и описанной около прямоугольного треугольника окружностей равны соответсвенно 3 и 11. найдите площадь треугольника
Ответ(ы) на вопрос:
Радиус описанной окружности прямоугольного треугольника (R):
R=c/2, гипотенуза c=2R=2*11=22
Радиус вписанной окружности в прямоугольный треугольник (r):
r=(a+b-c)/2, а+b=2r+c=2*3+22=28. а=28-b.
Также a²=c²-b²=484-b².
(28-b)²=484-b².
784-56b+b²=484-b².
b²-28b+150=0.
D=184
b1=(28-2√46)/2=14-√46. а1=14+√46
b2=14+√46. а2=14-√46
Площадь треугольника S=ab/2=(14-√46)(14+√46)/2=(196-46)/2=75
Не нашли ответ?
Похожие вопросы