Ответ(ы) на вопрос:
Гость
На рисунке 160 прямая ВЕ касается окружности с центром О в точке В. Найдите ∠РВЕ, если ∠АОВ=142° –––––––ОВ - радиус, проведенный в точку касания. Поэтому ∠ЕВО=90° ∆ ВОА - равнобедренный, т.к. АО=ВО= радиусы. Сумма углов треугольника=180° ∠ОВА=∠ОАВ=(180°-142°):2=19° ∠ЕВО=90°, ∠ЕВА=90°-19°=71° ∠ РВЕ смежный углу ЕВА. ∠ РВЕ=180°-71°=109°
Не нашли ответ?
Похожие вопросы