«решите уравнение 4(sin^3 x -cos^3 x) = 1/sin x-1/cos x»

«решите уравнение 4(sin^3 x -cos^3 x) = 1/sin x-1/cos x»
Гость
Ответ(ы) на вопрос:
Гость
(a - b)(a^2 + ab + b^2) = a^3 - b^3 - разность кубов Левая часть: 4*(sinx - cosx)(sin^2(x) + sinx*cosx + cos^2(x)) = 4*(sinx - cosx)*(1 + sinx*cosx) Правая часть: (cosx - sinx)/(sinx*cosx) 4*(sinx - cosx)*(1 + sinx*cosx)*sinx*cosx = cosx - sinx разделим обе части на (cosx - sinx) -4*(1 + sinx*cosx)*sinx*cosx = 1 -2*sin(2x)*(1 + sin(2x) / 2) = 1 -2sin(2x) - sin^2(2x) - 1 = 0 sin^2(2x) + 2sin(2x) + 1 = 0 Замена: sin(2x) = t, -1≤t≤1 t^2 + 2t + 1 = 0 D = 4 - 4 = 0 t = -1 Вернемся к замене: sin(2x) = -1 2x = 3π/2 + 2π*k x = 3π/4 + π*k ОДЗ: sinx ≠ 0, cosx ≠ 0 x ≠ πk, x ≠ π/2 + πk Ответ: x = 3π/4 + π*k
Не нашли ответ?
Ответить на вопрос
Похожие вопросы