Решите вариант 1 под номером 1 ,3 и 4 и вариант 2 под номером 1  пожалуйста!)))

Решите вариант 1 под номером 1 ,3 и 4 и вариант 2 под номером 1  пожалуйста!)))
Гость
Ответ(ы) на вопрос:
Гость
[latex] \int\limits^{ \frac{2 \pi }{3} }_0 {2sin( \frac{ \pi }{3}+x) } \, dx=-2cos( \frac{ \pi }{3}+x)| ^{ \frac{2 \pi }{3} }_0 =-2\cdot(cos( \frac{ \pi }{3}+ \frac{2 \pi }{3})-cos \frac{ \pi }{3})= \\ \\ =-2\cdotcos \pi +2cos \frac{ \pi }{3}=-2\cdot(-1)+2\cdot \frac{1}{2}=3 [/latex] f`(x)=4x³-4x f`(x)=0 4x³-4x=0 4x(x²-1)=0 4x(x-1)(x+1)=0 x=-1;x=0;x=1 [-4]_____-____ (-1) _+_ (0) _-_ (1) ___+___ [3] x=-1 - точка минимума х=0 - точка максимума х=1- точка минимума f(-4)=(-4)⁴-2·(-4)²+3=256-32+3=227 f(-1)=(-1)⁴-2·(-1)²+3=2 f(0)=0⁴-2·0²+3=3 f(1)=1⁴-2·1²+3=2 f(3)=3⁴-2·3²+3=66 О т в е т. 227- наибольшее, 2 - наименьшее. [latex]log_{5} \frac{25}{ \sqrt[3]{5} }= log_{5}5^{2- \frac{1}{3}}=log_{5}5^{ \frac{5}{3}} = \frac{5}{3} \\ \\ log_{7} \sqrt[3]{49}=log_{7}7^{ \frac{2}{3} }= \frac{2}{3} [/latex] О т в е т. (5/3)+(2/3)=7/3 [latex] \int\limits^{ 2 \pi }_0 {sin(x+ \frac{ \pi }{3}) } \, dx=-cos(x+ \frac{ \pi }{3})| ^{ 2 \pi }_0 =-(cos( 2 \pi +\frac{ \pi }{3})-cos(0+ \frac{ \pi }{3}))=0[/latex]
Не нашли ответ?
Ответить на вопрос
Похожие вопросы