Sin4x=cos3x решите уравнение пожалуйста _)

Sin4x=cos3x решите уравнение пожалуйста _)
Гость
Ответ(ы) на вопрос:
Гость
[latex]sin4x=sin( \frac{ \pi }{2} -3x) \\ sin4x-sin( \frac{ \pi }{2} -3x) =0 \\ 2cos\frac{4x+\frac{ \pi }{2} -3x}{2}sin\frac{4x-\frac{ \pi }{2} +3x}{2}=0 \\ cos(\frac{x}{2}+\frac{ \pi }{4})sin( \frac{7x}{2}-\frac{ \pi }{4})=0[/latex] [latex]cos(\frac{x}{2}+\frac{ \pi }{4})=0[/latex] или [latex]sin( \frac{7x}{2}-\frac{ \pi }{4})=0[/latex] [latex]\frac{x}{2}+\frac{ \pi }{4}= \frac{ \pi }{2} + \pi k[/latex] или  [latex]\frac{7x}{2}-\frac{ \pi }{4}= \pi n[/latex] [latex]x=\frac{ \pi }{2} + 2\pi k[/latex] или [latex]x=\frac{ \pi }{14} +\frac{ 2\pi n }{7}[/latex] Ответ: [latex]\frac{ \pi }{2} + 2\pi k[/latex], [latex]\frac{ \pi }{14} +\frac{ 2\pi n }{7},\ k,n \in Z[/latex]
Не нашли ответ?
Ответить на вопрос
Похожие вопросы