Точка E середина стороны AD параллелограмма ABCD. В каком отношении прямая BE делит диагональ AC параллелограмма. Найдите отношение площади треугольника ABE и четырехугольника BCDE

Точка E середина стороны AD параллелограмма ABCD. В каком отношении прямая BE делит диагональ AC параллелограмма. Найдите отношение площади треугольника ABE и четырехугольника BCDE
Гость
Ответ(ы) на вопрос:
Гость
1) Обозначим точку пересечения прямой BE и диагонали как М. Рассмотрим ∆AME и ∆BMC. ∠AMC = ∠BMC - как вертикальные ∠EAC = ∠BCA - как накрест лежащие. Значит, ∆AME~∆CMB - по I признаку. Из подобия треугольников => AE/BC = AM/MC AE = 1/2AD = 1/2BC. 1/2 = AM/MC = AM/(AC - AM) 2AM = AC - AM 3AM = AC AM = 3AC Значит, AM:MC = 1:2. 2) SABD = SBCD, т.к. площади равных фигур равны. SAEB = SBED, т.к. медиана BE делит треугольник ABD на два равновеликих треугольника AEB и BED. Тогда SAEB = 1/2SABD = 1/4SABCD SEDCB = SABCD - SAEB = SABCD - 1/4SABCD = 3/4SABCD SAEB/SEBCD = (1/4)/(3/4) = 1:3 Ответ: 1:2; 1:3.
Не нашли ответ?
Ответить на вопрос
Похожие вопросы