Точки А, В, С не лежат на одной прямой. M принадлежит AB; K принадлежит AC; P принадлежит МК. Докажите,что точка P принадлежит плоскости (ABC)

Точки А, В, С не лежат на одной прямой. M принадлежит AB; K принадлежит AC; P принадлежит МК. Докажите,что точка P принадлежит плоскости (ABC)
Гость
Ответ(ы) на вопрос:
Гость
По 1 аксиоме Гильберта плоскость АВС существует,  По 3 – М и К и , соответсвенно Х принадлежат этой плоскости .  Аксиоматика Гильберта  1. Каковы бы ни были три точки A, B и C, не принадлежащие одной прямой, существует плоскость α, которой принадлежат эти три точки. Каждой плоскости принадлежит хотя бы одна точка.  2. Каковы бы ни были три точки A, B и C, не принадлежащие одной прямой, существует не более одной плоскости, которой принадлежат эти точки.  3. Если две принадлежащие прямой a различные точки A и B принадлежат некоторой плоскости α, то каждая принадлежащая прямой a точка принадлежит указанной плоскости.  4. Если существует одна точка A, принадлежащая двум плоскостям α и β, то существует по крайней мере ещё одна точка B, принадлежащая обеим этим плоскостям.  5. Существуют по крайней мере четыре точки, не принадлежащие одной плоскости.
Не нашли ответ?
Ответить на вопрос
Похожие вопросы