Три равных окружности проходят через одну точку и попарно пересекаются в трех других точках А, В, и С. Докажите, что треугольник АВС равен треугольнику с вершинами в центрах окружностей

Три равных окружности проходят через одну точку и попарно пересекаются в трех других точках А, В, и С. Докажите, что треугольник АВС равен треугольнику с вершинами в центрах окружностей
Гость
Ответ(ы) на вопрос:
Гость
1.Рассмотрим два треугольника  QBP и QEP, где  Е-общая точка пересечения окружностей. эти треук равны, значит углы соответственно равны. Также  QВРЕ-ромб, следоват ВР параллельно  QЕ, и ЕР параллельно  QВ. 2.Рассмотрим 2 четырехугольника ОАQЕ и ОQРС -это ромбы,  АО паралл  QЕ, ОС паралл РЕ, следовательноугАОС=угQЕР, тогда из равенства треуг  QЕР=треугАОС, следоват АС=QР 3. если рассмотреть два четырехугольника  ОQВС и ОАВР, ОС парал ЕР и парал  QВ, а таже они равны = R., значит ОQВС -параллелограм по (насколько помню) первому признаку тогда QO=BC, а так же они паралл. аналогично доказывается что  ОАВР-параллелогр., а значит АВ=ОР, мы доказали, что в треуг  ОРQ и АВС   АС=QР, QO=BC,   АВ=ОР, а раз три стороны соответственно равны, то треуг=. 
Не нашли ответ?
Ответить на вопрос
Похожие вопросы