В арифметической прогрессии сумма первого и шестого членов равна 11 , а сумма второ
В арифметической прогрессии сумма первого и шестого членов равна 11 , а сумма второго и четвертого членов равна 10 . Найти сумму шести членов этой
прогрессии.
Ответ(ы) на вопрос:
Гость
{a1+ a6=11 a2+a4=10
Выразим а2, а4 , а6 через первый член арифметической прогрессии и разность прогрессии (d)
a2=a1+d a4=a1+3d a6=a1+5d и подставим в систему:
{a1+a1+5d=11 a1+d+a1+3d=10
{2a1+5d=11 2a1+4d=10
Решим систему методом сложения. Умножим первое уравнение на (-1) и сложим со вторым:
{-2a1-5d=-11 + 2a1+4d=10
-d=-1
d=1
2a1+4=10
a1=3 (подставили найденное значение d во второе уравнение системы и нашли первый член прогрессии.)
По формуле суммы n-первых членов прогрессии найдём сумму первых шести членов этой прогрессии:
S6=(2·3+5 )\2·6=33 (Sn=(2a1+d(n-1))\2·n)
ответ:33
Не нашли ответ?
Похожие вопросы