В городской олимпиаде по математике по 5 и 6 классам приняли участие 59 детей. Каждому участнику присваивается шифр - произвольное число, оканчивающееся номером класса, в котором он учится, оказалось, что сумма шифров пятикласс...
В городской олимпиаде по математике по 5 и 6 классам приняли участие 59 детей. Каждому участнику присваивается шифр - произвольное число, оканчивающееся номером класса, в котором он учится, оказалось, что сумма шифров пятиклассников равна сумме шифров шестиклассников. На следующий год в олимпиаде по 6 и 7 классвамп приняли участие эти же 59 ребят. Могли ли суммы шифров этих шестиклассников и семиклассников оказаться равными?
Ответ(ы) на вопрос:
Скорее всего нет. Может потому что цифры поменялись. Ну может и да...
Не нашли ответ?
Похожие вопросы