В круге с центром в точке О проведен диаметр АВ. Через точки А и В проведены касательные. Третья касательная, проведенная через точку М окружности, пересекает первые две касательные в точках С и Д. Докажите, что треугольник СОД...

В круге с центром в точке О проведен диаметр АВ. Через точки А и В проведены касательные. Третья касательная, проведенная через точку М окружности, пересекает первые две касательные в точках С и Д. Докажите, что треугольник СОД прямоугольный.
Гость
Ответ(ы) на вопрос:
Гость
Треугольники СМО и САО равны (ну, например, по трем сторонам :)), поэтому СО - биссектриса угла МОА. Аналогично - из равенства треугольников MOD и ODB - OD - биссектриса угла МОВ. Поэтому СО и OD - биссектрисы смежных углов. ПОэтому они перпендикулярны, чтд.   Если кому-то :) кажется сложным утверждение про биссектрисы смежных углов, сумма углов СМО и МОD равна половине суммы углов МОА и МОВ, то есть 180/2= 90 градусов. По-существу, это и есть доказательство того, что биссектрисы смежных углов взаимно перпендикулярны
Не нашли ответ?
Ответить на вопрос
Похожие вопросы