В остроугольном треугольнике ABC проведены высота BH и медиана AM. Известно, что ∠MCA=70∘, ∠MAC=35∘, BC=4. Найдите длину отрезка AH.
В остроугольном треугольнике ABC проведены высота BH и медиана AM. Известно, что ∠MCA=70∘, ∠MAC=35∘, BC=4. Найдите длину отрезка AH.
Ответ(ы) на вопрос:
Медиана, проведенная к гипотенузе, равна половине гипотенузы, значит в треугольнике BHC HM-медиана и равна половине гипотенузы BC, т.е. 2. ∠MAC = 35. Тогда ∠MHC = ∠ MCH = ∠MCA =70 По теореме о внешнем угле треугольника ∠AMH = ∠MHC – ∠MAC=70-35=35. Значит, треугольник AMH – также равнобедренный. Следовательно, AH = HM = 2
Не нашли ответ?
Похожие вопросы