В параллелограмме [latex] ABCD , \ AD = 6, [/latex] высота [latex] BB_1 [/latex] делит [latex] AD [/latex] пополам,а другая высота [latex] BB_2 = 4.8 \ , \ A_1 [/latex] делит [latex] BC [/latex] в отношении [latex] BA_1 : A_1C ...
В параллелограмме [latex] ABCD , \ AD = 6, [/latex] высота [latex] BB_1 [/latex] делит [latex] AD [/latex] пополам,
а другая высота [latex] BB_2 = 4.8 \ , \ A_1 [/latex] делит [latex] BC [/latex] в отношении [latex] BA_1 : A_1C = 1 : 2 , [/latex]
[latex]AA_1 [/latex] пересекает [latex] BD [/latex] в точке [latex] D_1 , \ CB_1 [/latex] пересекает [latex] BD [/latex] в точке [latex] C_1 . [/latex]
Найти площадь [latex] A B_1 C_1 D_1 . [/latex]
Ответ(ы) на вопрос:
Треугольники АВВ₁ и В₂ВС подобны по двум углам (одни прямые, другие- противоположные углы параллелограмма).
Находим сторону В₂С по Пифагору:
В₂С = √(6² - 4,8²) = √(36 - 23,04) = √12,96 = 3,6.
Отсюда можно найти высоту параллелограмма ВВ₂ из подобия треугольников:
ВВ₁ / ВВ₂ = АВ₁ / В₂С.
ВВ₁ = ВВ₂*АВ₁ / В₂С = 4,8*3 / 3,6 = 4.
Площадь заданного четырёхугольника АД₁С₁В₁ равна площади треугольника АД₁Д минус площадь треугольника В₁С₁Д.
Высоты этих треугольников находим из соотношения сторон двух пар подобных треугольников:
∴АД₁Д ∴ВД₁А₁,
∴В₁С₁Д ∴ВС₁С.
S(АД₁Д) = (1/2)*6*((6/(6+2))*4) = 3*3 = 9 кв.ед.
S(В₁С₁Д) = (1/2)*3*((3/(3+6))*4 = (1/2)*3*(1/3)*4 = 2.
Ответ: S(АД₁С₁В₁) = 9 - 2 = 7.
Не нашли ответ?
Похожие вопросы