В правильной четырехугольной пирамиде SABCD точка O - центр основания, S - вершина, SO=30, SA=34. Найдите длину отрезка AC и угол между боковым ребром и плоскостью основания.

В правильной четырехугольной пирамиде SABCD точка O - центр основания, S - вершина, SO=30, SA=34. Найдите длину отрезка AC и угол между боковым ребром и плоскостью основания.
Гость
Ответ(ы) на вопрос:
Гость
Пирамида правильная, значит в основании квадрат. SO - высота (O - центр основания), значит SO перпендикулярно AC. Из прямоугольного треугольника ASO: AO = корень(AS^2 - SO^2) = корень (1156 - 900) = 16 АО - половина AC (в основании квадрат, значит его центр - точка пересечения диагоналей, следовательно - центр AC). AC = 2AO = 32 Угол SAC будет углом между боковым ребром и основанием.  cosSAC = AO/AS = 32/34 = 16/17 SAC = arccos16/17
Не нашли ответ?
Ответить на вопрос
Похожие вопросы