В правильной треугольной пирамиде SABC с вершиной S, все рёбра которой равны 6, точка М – середина ребра BC, точка О – центр основания пирамиды, точка F делит отрезок SO в отношении 1:2, считая от вершины пирамиды. a) Найдите о...

В правильной треугольной пирамиде SABC с вершиной S, все рёбра которой равны 6, точка М – середина ребра BC, точка О – центр основания пирамиды, точка F делит отрезок SO в отношении 1:2, считая от вершины пирамиды. a) Найдите отношение, в котором плоскость CMF делит отрезок SA, считая от вершины S.
Гость
Ответ(ы) на вопрос:
Гость
Рассмотрим ΔASM; AS=6; SM=AM=3√3 как высоты равносторонних треугольников. Высота SO пирамиды делит AM в отношении AO:OM= 2:1;  по условию SF:FO=1:2. Продолжим MF до пересечения с AS в точке K; поскольку точки M и F лежат в плоскости CMF, точка K также лежит в этой плоскости и поэтому является точкой пересечения плоскости CMF с ребром AS. Для нахождения отношения SK:KA применим теорему Менелая к треугольнику ASO и прямой MK: (SK/KA)·(AM/MO)·(OF/FS)=1; (SK/KA)·(3/1)·(2/1)=1; SK/KA=1/6. Если Вы по какой-то неизвестной мне причине до сих пор не знаете теорему Менелая, или учительница не разрешает ей пользоваться, то Вам придется воспользоваться скучной теоремой о пропорциональных отрезках. Для этого придется к тому же сделать дополнительное построение - провести прямую через точку  O параллельно MK до пересечения с AS в точке L. SK/KL=SF/FO=1/2; KL/LA=MO/OA=1/2⇒ в SK одна часть, в LK в два раза больше, то есть две части,  в LA в два раза больше, чем в LK, то есть четыре части⇒ в KA шесть частей⇒ SK/KA=1/6
Не нашли ответ?
Ответить на вопрос
Похожие вопросы