В прямоугольном треугольнике угол между гипотенузой и медианой, проведенной к ней, равен 76 градусов. Найти больший из двух острых углов прямоугольного треугольника. Ответ в градусах.
В прямоугольном треугольнике угол между гипотенузой и медианой, проведенной к ней, равен 76 градусов. Найти больший из двух острых углов прямоугольного треугольника. Ответ в градусах.
Ответ(ы) на вопрос:
Пусть имеем треугольник ABC, CH- высота и CM - медиана Угол МСН = 76 градусов по условию задачи В прямоугольном треугольнике СMN cумма острых углов СМН, МСН равна 90 градусов, то есть угол СМН = 90 – угол МСН = 90 – 76 = 14 градусов Треугольник АМС равнобедренный, СМ равна половине гипотенузы , а АМ равна половине гипотенузы, так как СМ - медиана. Отсюда следствие, что угол САM равен углу АСМ по свойству углов при основании равнобедренного треугольника. Угол AMC = 180-14=166 градуса Угол СAM +угол MCA=180-166=14 Угол СAM =угол MCA=14/2=7 градусов Угол СBA=90-7=83 градуса
Не нашли ответ?
Похожие вопросы