В рівнобічну трапецію вписано коло. Бічна сторона трапеції поділена точкою дотику на відрізки 1 і 4 см. Знайдіть радіуси вписаного та описаного кіл трапеції

В рівнобічну трапецію вписано коло. Бічна сторона трапеції поділена точкою дотику на відрізки 1 і 4 см. Знайдіть радіуси вписаного та описаного кіл трапеції
Гость
Ответ(ы) на вопрос:
Гость
АВСД - трапеция, вписанная окружность касается сторон окружности АВ, ВС , СД и АД в точках К, М, Н и Р соответственно, АК=4 см, ВК=1 см. Радиус вписанной окружности: r=√(АК·ВК)=√4=2 см - первый ответ. Опустим высоту ВЕ на основание АД. В тр-ке АВЕ cosA=АЕ/АВ. АВ=АК+ВК=5 см. В равнобедренной трапеции АЕ=(АД-ВС)/2.  АР=АК и ВК=ВМ как касательные к окружности из одной точки соответственно, АД=2АР=2АК=8 см, ВС=2ВМ=2ВК=2 см. АЕ=(8-2)/2=3 см. cosA=3/5. В тр-ке АВД по т. косинусов ВД²=АВ²+АД²-2АВ·АД·cosA, ВД²=5²+8²-2·5·8·3/5=41, ВД=√41. В тр-ке АВД ВД/sinA=2R ⇒ R=ВД/2sinA. Окружность, описанная около треугольника АВД, также является описанной около трапеции АВСД. sin²A=1-cos²A=1-9/25=16/25, sinA=4/5. R=5√41/8 см - второй ответ.
Гость
Решение в приложении.
Не нашли ответ?
Ответить на вопрос
Похожие вопросы