В ромбе mpkt на сторонах отмечены четыре точки делящие стороны в отношении 2:3 считая от вершин m и K докажите что отмеченные точки являются вершинами прямоугольника

В ромбе mpkt на сторонах отмечены четыре точки делящие стороны в отношении 2:3 считая от вершин m и K докажите что отмеченные точки являются вершинами прямоугольника
Гость
Ответ(ы) на вопрос:
Гость
в ромбе стороны равны,  диагонали пересекаются по прямым углом. Проведем через  отмеченные точки отрезки. Рассматриваем треугольники, образованные диагоналями и отрезками. 1 - меньшая диагональ: имеем два больших треугольника с основанием диагональю, а в них два меньших с основаниями - отрезками. Треугольники подобны по двум сторонам и углу между ними с коэффициентом подобия 2:5 (3+2=5 - сторона ромба из 5 частей).  Из подобия вытекает, что отрезки параллельны диагонали ромба параллельны между собой.  Большая диагональ перпендикулярна меньшей, а значит и отрезкам параллльеным этой диагонали. 2- большая диагональ - аналогично, коэффициент подобия 3:5.  Отрезки параллельны меньшей диагонали и перпендикулярны  большей.  Отсюда имеем прямоугольник
Не нашли ответ?
Ответить на вопрос
Похожие вопросы