В трапеции AB=BC=CD, AD=2BC. Найдите угол, под которым пересекаются прямые, содержащие боковые стороны AB и CD. Ответ укажите в градусах.

В трапеции AB=BC=CD, AD=2BC. Найдите угол, под которым пересекаются прямые, содержащие боковые стороны AB и CD. Ответ укажите в градусах.
Гость
Ответ(ы) на вопрос:
Гость
Пусть точка пересечения продолжения сторон АВ и CD это точка Е. Тогда треугольники АЕD и ВЕС подобны, так как ВС параллельна AD. AD =2*BC. Значит коэффициент подобия треугольников равен 1/2. Тогда ЕВ/ЕА = ЕС/ЕD = 1/2. Отсюда АЕ =ЕD = AD и треугольник АЕD равносторонний (также как и тр-к ВЕС). Тогда угол, под которым пересекаются прямые, содержащие боковые стороны AB и CD,      АЕD = 60°
Не нашли ответ?
Ответить на вопрос
Похожие вопросы