В трапеции ABCD с основаниями AD и BC диагонали пересекаются в точке P. Докажите, что площади треугольников APB и CPD равны.
В трапеции ABCD с
основаниями AD и BC диагонали
пересекаются в точке P. Докажите,
что площади треугольников APB и CPD равны.
Ответ(ы) на вопрос:
если рассмотреть площади треугольников АВС и BCD,
то нетрудно заметить:
S(ABC) = S(ABP) + S(BPC)
S(BCD) = S(CPD) + S(BPC) --- видим одинаковые слагаемые)))
т.е. доказав равенство площадей треугольников АВС и ВСD,
мы докажем требуемое)))))))
треугольники АВС и ВСD имеют общую сторону...
если в каждом из этих треугольников провести высоты к этой общей стороне (ВС))),
то эти высоты окажутся равными --- как отрезки параллельных прямых, заключенные между параллельными основаниями трапеции)))
значит и площади равны...
Не нашли ответ?
Похожие вопросы