В трапеции АВСD отрезки АВ и СD являются основаниями. Диагонали трапеции пересекаются в точке К. Найдите площадь треугольника АКD, если АВ = 27 см, СD = 18 см, АD = 3 см, ВС =6√2 см

В трапеции АВСD отрезки АВ и СD являются основаниями. Диагонали трапеции пересекаются в точке К. Найдите площадь треугольника АКD, если АВ = 27 см, СD = 18 см, АD = 3 см, ВС =6√2 см
Гость
Ответ(ы) на вопрос:
Гость
Проведём высоты СР и ДМ к основанию АВ. ДМ=СР. АМ+ВР=АВ-МР=АВ-СД=27-18=9 см. Пусть АМ=х, тогда ВР=9-х. В тр-ке АДМ ДМ²=АД²-АМ²=9-х². В тр-ке ВСР СР²=ВС²-ВР²=(6√2)²-(9-х)²=72-81+18х-х²=18х-9-х². 9-х²=18х-9-х², 18х=18, х=1. АМ=1 см. ДМ²=9-1=8, ДМ=2√2 см. К основаниям трапеции через точку К проведём перпендикуляр НТ. НТ=ДМ. По свойству трапеции треугольники АКВ и СКД подобны, значит АВ/СД=ТК/НК. Пусть ТК=у, тогда НК=2√2-у. 27/18=у/(2√2-у), 54√2-27у=18у, 45у=54√2, у=1.2√2. ТК=1.2√2 см. S(АВД)=АВ·ДМ/2=27·2√2/2=27√2 см². S(АКВ)=АВ·ТК/2=27·1.2√2/2=16.2√2 см². S(АКД)=S(АВД)-S(АКВ)=27√2-16.2√2=10.8√2 см² - это ответ.
Не нашли ответ?
Ответить на вопрос
Похожие вопросы