В треугольнике ABC биссектриса BK делит сторону AC на отрезки AK и KC так что KC-AK=2 см найдите стороны треугольника если AB:BC =2:3 и его периметр равняеться 25 см
В треугольнике ABC биссектриса BK делит сторону AC на отрезки AK и KC так что KC-AK=2 см найдите стороны треугольника если AB:BC =2:3 и его периметр равняеться 25 см
Ответ(ы) на вопрос:
У биссектрисы есть полезное свойство: Биссектриса угла треугольника делит противоположную сторону в отношении, равном отношению двух прилежащих сторон.
Отношение сторон AB:BC =2:3
Значит,
АВ:ВС=АК:КС Пусть КС=х, тогда АК= х-2 АК:КС=2:3 (х-2):х=2:3
Произведение средних членов трапеции равно произведению ее крайних членов 2х=3х-6
х=6
АС=х+х-2=6+(6-2)=10
АС=10 см
АВ+ВС=25-10=15 см
АВ:ВС=2:3
Пусть коэффициент отношения сторон будет у, тогда АВ+ВС=5у
5у=15
у=3
АВ=2у=6 см
ВС=3у=9 см
Проверка:
АВ+ВС+АС=6+9+10=25 см
Не нашли ответ?
Похожие вопросы