В треугольнике авс угол с равен 90, СН - высота, угол А равен 30 , АВ = 12 . найти ВН

В треугольнике авс угол с равен 90, СН - высота, угол А равен 30 , АВ = 12 . найти ВН
Гость
Ответ(ы) на вопрос:
Гость
∠А=30°  ⇒ СВ=6 ∠СНВ прямой, т.к. СН- высота ∠В=60°, поэтому∠НСВ=180-90-60=30°  ⇒ ВН=1/2 СВ=6/2=3
Гость
Треугольник ABC: уг C=90, уг A=30 -> уг B=60. A=12 - гипотенуза. Катет, лежащий против угла в 30 градусов = 1/2 гипотенузы. -> CB=1/2*12=6. CH-высота. Рассмотрим треугольник CHB: BC - гипотенуза=6, уг CHB=90, уг B=60 -> уг HCB=30. Используем то же свойство про 30 градусный угол и гипотенузу->BH=1/2*6=3 Ответ:3.
Не нашли ответ?
Ответить на вопрос
Похожие вопросы