Задача C1. Тело бросили под углом 30 градусов к горизонту с некоторой скоростью.Дальность его полета составила 9 метров.Можно ли добиться такой же дальности полета при другом угле бросания,но с той же по модулю начальной скорос...
Задача C1. Тело бросили под углом 30 градусов к горизонту с некоторой скоростью.Дальность его полета составила 9 метров.Можно ли добиться такой же дальности полета при другом угле бросания,но с той же по модулю начальной скоростью?Под каким?
Ответ(ы) на вопрос:
Дальность полета тела, брошенного под углом а к горизонту считается по формуле
[latex]l= \frac{v_0^2*sin(2a)}{g} [/latex]
Подставляем наши данные
[latex]9= \frac{v_0^2*sin(60)}{9,81} = \frac{v_0^2* \sqrt{3} }{2*9,81} [/latex]
Отсюда нетрудно найти начальную скорость
[latex]v_0= \sqrt{ \frac{9*2*9,81}{ \sqrt{3} } } = \sqrt{101,95}= 10,1[/latex]
Но все это можно было и не искать, потому что главный вопрос:
Можно ли добиться такой же дальности полета при другом угле бросания?
Ответ: Можно!
Обозначим новый угол b. такая же дальность получится, если
sin(2b) = sin(2a)
То есть, если
2b = 180 - 2a;
b = 90 - a = 90 - 30 = 60 градусов.
Понимаете, почему наибольшая дальность полета достигается при угле 45 гр?
sin 90 = 1 - максимальному значению синуса.
Не нашли ответ?
Похожие вопросы