Задача по геометрии!KM и KN - отрезки касательных, проведенных из точки K к окружности с центром О. Найдите эти отрезки, если ОК=12 см, угол МОN=120 градусов.

Задача по геометрии! KM и KN - отрезки касательных, проведенных из точки K к окружности с центром О. Найдите эти отрезки, если ОК=12 см, угол МОN=120 градусов.
Гость
Ответ(ы) на вопрос:
Гость
MO=ON(Т.К. РАДИУСЫ) Доказываем равенство треугольников по свойству касательных из одной точки, Тогда угол KON=MOK и они по 60 градусов. 120/2=60 градусов. Есть два прямоугольных треугольника. Радиусы ON и OM находятся по свойство угла в 30 градусов, т.е. 2ON=OK 2ON=12 /2(ДЕЛИЛИ ОБЕ ЧАСТИ) ON=6  Затем находим всё по теореме Пифагора. KN+ON=OK(все величины в квадрате) KN2+36=144 KN2=144-36=108 градусов. корень из KN=корень из 108 радусов и это 6 корней из 3. KN=KM(по свойству отрезков касательных) Ответ:KN=KM=6 корней из 3.
Гость
отрезки касательных, проведённых из одной точки к окружности равны и образуют равные углы с прямой, проходящей через центр окружности и точку, из которой проведены касательные, поэтому МК=КN, угол ОКN=углу ОКМ, угол ОМК=углу ОNК=90 градусов по свойству касательных, тогда угол КОТ= углу КОМ=120:2=60 градусов. По соотношениям в прямоугольном треугольнике КМ=ОК*sin60=12*√3/2=6√3
Не нашли ответ?
Ответить на вопрос
Похожие вопросы