Дипломная работа: Алгоритмы параллельных процессов при исследовании устойчивости подкрепленных пологих оболочек
до тех пор, пока прогибы не будут резко возрастать (в 10-15 раз по сравнению с первоначальным значением).
Начальное приближение находится из решения линейно-упругой задачи (24).
Второй вариант соотношений получается, если взять в виде (5) и тогда (так как деформации при считаются известными, то производные от них по равны нулю)
(36)
(37)
(38)
Таким образом, выражения оказываются одинаковыми, как для , взятого в виде (4), так и для , взятого в виде (5). При учете геометрической нелинейности такого полного совпадения не будет. При использовании в виде (5) значение правых частей системы (15) будут несколько больше, чем при использовании в виде (4), что пойдет в запас прочности.
2.1 Программа PologObolochka
Программа предназначена для расчетов прочности и устойчивости оболочек при учете геометрической и физической нелинейностей и ползучести материала и разработана Беркалиевым Р.Т. [11] Программа может быть запущенна под любой версией ОС Windows, начиная с версии NT.
Программа состоит из нескольких базовых блоков:
Получение коэффициентов С систем алгебраических уравнений линейно-упругой задачи;
Метод итераций для геометрически и физически-нелинейной задачи;
Построения графиков устойчивости;
Построение 3-D графиков устойчивости;
Метод итераций ползучести (с построением графиков);
Построение 3-D графиков ползучести.
От физической модели не зависит блок 1, все остальные блоки зависят от нее. Таким образом, в зависимости от физической линейности или нелинейности вызываются соответствующие блоки. Блок 1 и блок 2 являются базовыми для расчета любой задачи.
Блок 1: Получение коэффициентов С систем алгебраических уравнений линейно-упругой задачи.
Блок вычисляет коэффициенты C для составления базовой системы уравнений модели расчета, и записывает их в файл, чтобы в дальнейшем, для этой же задачи загрузить их из файла. Коэффициенты вычисляются по ряду параметров, которые запрещено менять в дальнейших вычислениях, при расчете текущей задачи.
Блок 2: Метод итераций для геометрически и физически-нелинейной задачи.