Дипломная работа: Использование моделирования в обучении решению задач в 5 классе
Учебная деятельность при решении задач складывается из умственных действий и осуществляется эффективно, если первоначально она происходит на основе внешних действий с предметами. Главной проблемой остается то, что дети не могут перейти от текста задачи к математической модели.
Обучение математике требует развития у детей самостоятельности в решении текстовых задач. Каждый ученик должен уметь кратко записывать условие задачи, иллюстрируя ее с помощью рисунка, схемы, чертежа и других видов моделей, обосновывать каждый шаг в анализе задачи и ее решении, проверять правильность решения.
«Рисунки, схемы, чертежи не только помогают учащимся в сознательном выявлении скрытых зависимостей между величинами, но и побуждают активно мыслить, искать наиболее рациональные пути решения задач, помогают не только усваивать знания, но и овладевать умением применять их. Эти условия необходимы для того, чтобы обучение носило развивающий характер» [10, 7].
Графические изображения, используемые для постановки познавательных задач, наглядно представляя соотношения между данными и искомыми величинами, помогают ученикам схватить речевой смысл проблемной ситуации, а затем и найти возможный путь решения.
Главное для каждого ученика на этом этапе – понять задачу, то есть уяснить, что в ней известно, что нужно узнать, как связаны между собой данные, каковы отношения между данными и искомыми параметрами. Для этого следует применять моделирование и учить этому детей.
Действующая программа обучения математике требует развития самостоятельности у учащихся в решении текстовых задач. Еще в начальной
школе каждый ученик должен уметь кратко записывать условие задачи, иллюстрируя ее с помощью рисунка, схемы или чертежа, обосновывать каждый шаг в анализе задачи и в ее решении, проверять правильность ее решения. Однако на практике требования программы выполняются далеко не полностью, что приводит к серьезным проблемам в знаниях и навыках учащихся.
Целью данной выпускной квалификационной работы является разработка различных вспомогательных моделей, используемых при решении задач.
Задачи:
1. изучить научную, методическую литературу по данному вопросу;
2. разработать конспекты уроков математики;
3. провести уроки и проанализировать их.
Объект исследования: процесс обучения пятиклассников решению текстовых задач на уроках математики.
Предмет: моделирование как средство обучения решению задач.
Контингент: учащиеся 5 классов Бреховской школы.
Гипотеза: использование моделирования способствует формированию умения решать текстовые задачи.
При написании данной работы, использовалась научная, методическая литература, справочные материалы. Всего проанализировано более двадцати источников.
Глава 1. Теоретические основы моделирования
1.1. Понятие модели и моделирования
С середины XX века в самых различных областях человеческой деятельности стали широко применять математические методы и ЭВМ. Возникли такие новые дисциплины, как «математическая экономика», «математическая химия», «математическая лингвистика» и т.д., изучающие математические модели соответствующих объектов и явлений, а также методы исследования этих моделей.
Вообще в науке широко используется метод моделирования. Он заключается в том, что для исследования какого-либо объекта или явления выбирают или строят другой объект, в каком-то отношении, подобный исследуемому. Построенный или выбранный объект изучают и с его помощью решают исследование задачи, а затем результаты решения этих задач переносят на первоначальные явления или объект.
«Под моделью (от лат. modulus – мера, образец, норма) понимают такой материальный или мысленно представляемый объект, который в процессе познания (изучения) замещает объект – оригинал, сохраняя некоторые важные для данного исследования типичные черты. Процесс построения и использования модели, называется моделированием.» [6, 123]
Во всех науках модели выступают как мощное орудие познания.
Например:
1. Люди издавна интересуются, как устроена наша Вселенная. Этот интерес не только познавательный, но и сугубо практический, так как люди хотели научиться предсказывать периодические явления, связанные с устройством Вселенной, такие, как: затмение солнца и луны, наступление времен года.
«Для решения этих задач, ученые строили свои представления о Вселенной в виде схемы картины мира, в которой объекты (планеты, Солнце, звезды, Земля и Луна) изображались точками, движущимся по каким-то кривым – траекториям их движения. Таковы, например, схемы, построенные Птолемеем, в которых центральное место занимала наша Земля, или схема Коперника, в которой центральное место занимало Солнце.
С помощью этих схем ученые решали задачи предсказания отдельных астрономических явлений. Эти схемы или картины мира – суть модели Вселенной, а метод исследования Вселенной, нахождение законов и решения задач, связанных с помощью этих моделей, является методом моделирования» [19, 185].
2. Люди издавна интересуются, как устроены они сами, как функционирует человеческий организм. Но исследовать эти вопросы на живом человеческом организме очень трудно. Ибо такое изучение до появления особых приборов было связано с гибелью этого организма. Тогда ученые стали исследовать устройство человеческого организма на подобных его организму животных. Изучение организма животных, их функционирование помогло установить многие важнейшие закономерности функционирования человеческого организма.
В этих исследованиях организмы животных выступали в качестве модели человеческого организма.