Дипломная работа: Использование моделирования в обучении решению задач в 5 классе
Знаковыми моделями текстовых задач, выполненными на математическом языке, являются:
- выражение;
- уравнение;
- система уравнений;
- запись решения задачи по действиям.
Схематизированные, графические и знаковые модели, выполненные на естественном языке – вспомогательные модели, а знаковые модели, выполненные на математическом языке – решающие.
Уровень овладения моделированием определяет успех решающего. Поэтому обучение моделированию занимает особое и главное место в формировании умения решать задачи.
Полезно применять чертежи и схематические рисунки, блок – схемы,
моделирование с помощью отрезков и таблиц.
«Графические модели и таблицы позволяют сравнивать пары понятий: левая – правая, верхняя – нижняя, увязывать пространственную информацию с информацией меры, тем самым, формируя умение решать задачи.» [14, 113]
Итак, модель нужна для того, чтобы понять, как устроен конкретный объект, какова его структура, основные свойства, законы развития; научиться управлять объектом или процессом, определять наилучшие способы управления при заданных целях и критериях.
1.2. Моделирование в решении текстовых задач
«Задача – это такая ситуация, которая связана с числами и требует выполнения арифметических действий над ними» [1, 171].
«Текстовая задача – это словесная модель некоторого явления (ситуации, процесса). Чтобы решить такую задачу, надо перевести ее на язык математических действий, то есть построить ее математическую модель.
Решение любой задачи – процесс сложной умственной деятельности. Реальные объекты и процессы в задаче бывают столь многогранны и сложны, что лучшим способом их изучения часто является построение и исследование модели как мощного орудия познания.» [4, 5]
Решению текстовых задач в обучении уделяется огромное внимание. Связано это с тем, что такие задачи часто являются не только средством формирования многих математических понятий, но и главное - средством формирования умений строить математические модели реальных явлений, а также средством развития мышления детей. Существуют различные методические подходы к обучению детей решению текстовых задач. Но какую бы методику обучения ни выбрал учитель, ему надо знать, как построены такие задачи.
«Любая текстовая задача представляет собой описание какого-либо явления (ситуации, процесса). С этой точки зрения текстовая задача есть словесная модель явления (ситуации, процесса). И, как во всякой модели, в текстовой задаче описывается не все явление в целом, а лишь некоторые его стороны, главным образом, его количественные характеристики.» [22, 121]
Обобщая, можно сказать, что текстовая задача есть описание на естественном языке некоторого явления (ситуации,процесса) с требованием дать количественную характеристикукакого-либо компонента этого явления, установить наличие или отсутствие некоторого отношения между компонентами или определить вид этого отношения.
Утверждения задачи называют условиями. В задаче обычно не одно условие, а несколько элементарных условий. Они представляют собой количественные или качественные характеристики объектов задачи и отношений между ними. Требований в задаче может быть несколько. Они могут быть сформулированы как в вопросительной, так и утвердительной форме. Условия и требования взаимосвязаны. Систему взаимосвязанных условий и требований называют высказывательной моделью задачи. Таким образом, чтобы понять, какова структура задачи, надо выявить ее условия и требования, отбросив все лишнее, второстепенное, не влияющее на ее структуру. Иными словами, надо построить высказывательную модель задачи. Чтобы получить эту модель, надо текст задачи развернуть (сделать это можно письменно или устно), так как текст задачи, как правило, дается в сокращенном, свернутом виде. Для этого можно перефразировать задачу, построить ее графическую модель, ввести какие-либо обозначения и т.д.
«Основными методами решения текстовых задач являются арифметический и алгебраический.
Решить задачу арифметическим методом - это значит найти ответ на требование задачи посредством выполнения арифметических действий над числами.
Одну и ту же задачу можно решить различными арифметическими способами. Они отличаются друг от друга логикой рассуждений, выполняемых в процессе решения задачи» [16, 374].
Решить задачу алгебраическим методом - это значит найти ответ на требование задачи, составив и решив уравнение или систему уравнений. Если для одной и той же задачи можно составить различные уравнения (системы уравнений), то это означает, что данную задачу можно решить различными алгебраическими способами.
Решение любой задачи - процесс сложной умственной деятельности. Чтобы овладеть им, надо знать основные этапы решения задачи и некоторые приемы их выполнения.
Деятельностьпо решению задачи арифметическим методом включает следующие основные этапы:
1. Анализ задачи.
2. Поиск плана решения задачи.
3. Осуществление плана решения задачи.
4. Проверка решения задачи.