Дипломная работа: Использование моделирования в обучении решению задач в 5 классе

«Математической моделью можно назвать специальное описание (часто приближенное) некоторой проблемы, ситуации, которое дает возможность в процессе ее анализа применять формально – логический аппарат математики. При математическом моделировании имеем дело с теоретической копией, которая в математической форме выражает основные закономерности, свойства изучаемого объекта» [17, 131].

Основная цель моделирования – исследовать эти объекты и предсказать результаты будущих наблюдений. Однако моделирование – это еще и метод познания окружающего мира, дающий возможность управлять им.

«В процессе математического моделирования выделяют три этапа:

1. Формализация – перевод предложенной задачи (ситуации) на язык

математической теории (построение математической модели задачи).

2. Решение задачи в рамках математической теории (говорят: решение внутри модели).

3.Перевод результата математического решения задачи на тот язык, на котором была сформулирована исходная задача (интерпретация решения).» [20, 2]

Чаще всего математическая модель представляет собой несколько упрощенную схему (описание) оригинала, а значит, обладает определенным уровнем погрешности.

Одна и та же модель может описывать различные процессы, объекты, поэтому результаты внутримодельного исследования одного явления зачастую могут быть перенесены на другое. В этом состоит одно из основных достоинств математического моделирования.

«Математика не только создала разнообразные внутренние модели алгебры, геометрии, функции комплексного переменного, дифференциальных уравнений и т.д., но и помогла естествознанию построить математические модели механики, электродинамики, термодинамики, химической кинетики, микромира, пространства – времени и тяготения, вероятностей передачи сообщений, управления, логического вывода.» [6, 124]

Созданием моделей математика часто опережала потребности естествознания и техники. [Приложение 1]

Реализация универсального математического метода познания есть основная цель и задача современной математики. Она включает, в первую очередь, построение новых, неведомых математических моделей, в частности в биологии, для познания жизни и деятельности мозга, микромира, новых, фантастических технологий и техники, а также познание экономических и социальных явлений также с помощью математических моделей различными математическими методами. Любая математическая задача состоит из условия (утверждения), вопроса или требования. Причем, в задаче обычно не одно, а несколько элементарных условий. Они представляют собой количественные или качественные характеристики объектов задачи и отношения между ними.

Требований в заданиях тоже может быть несколько. Они могут быть сформулированы, как в вопросительной, так и в утвердительной форме. Условия и требования взаимосвязаны. Систему взаимосвязанных условий и требований называют высказывательной моделью (словесной).

«Глубина и значимость открытий, которые делает школьник, решая задачи, определяется характером осуществляемой им деятельности и мерой ее усвоения, тем, какими средствами этой деятельности он овладеет. Для того чтобы ученик мог выделить и освоить способ решения широкого класса задач, а не ограничивался нахождением ответа в данной, конкретной задаче, он должен овладеть некоторыми теоретическими знаниями о задаче, прежде всего, о ее структуре» [5, 132].

Чтобы структура задачи стала предметом анализа и изучения, необходимо отделить ее от всего несущественного и представить в таком виде, который обеспечивал бы необходимые действия. Сделать это можно путем особых знаково-символических средств – моделей, однозначно отображающих структуру задачи и достаточно простых для восприятия школьниками.

«В структуре любой задачи выделяют:

1. Предметную область, то есть объекты, о которых идет речь в задаче.

2. Отношения, которые связывают объекты предметной области.

3. Требования задачи» [7, 93].

Все модели можно разделить на схематизированные и знаковые по видам средств, используемых для их построения.

Схематизированные модели, в свою очередь, делятся на вещественные и графические в зависимости от того, какое действие они обеспечивают. Вещественные (или предметные) модели текстовых задач обеспечивают физическое действие с предметами. Они могут строиться из каких-либо предметов, они могут быть представлены разного рода исценировками сюжета задач. К этому виду моделей причисляют и мысленное воссоздание реальной ситуации, описанной в задаче, в виде представлений.

«Графические модели используются, как правило, для обобщенного, схематического воссоздания ситуации задачи. К графическим следует отнести следующие виды моделей:

· рисунок;

· условный рисунок;

· чертеж;

· схематический чертеж (или просто схема).

Знаковые модели могут быть выполнены как на естественном языке, так и на математическом языке. К знаковым моделям, выполненным на естественном языке, можно отнести:

- краткую запись задачи;

- таблицы» [22, 130].

К-во Просмотров: 373
Бесплатно скачать Дипломная работа: Использование моделирования в обучении решению задач в 5 классе