Дипломная работа: Кольцо целых чисел Гаусса

Заключение.23


Введение.

Кольцо целых комплексных чисел было открыто Карлом Гауссом и названо в его честь гауссовым.

К. Гаусс пришел к мысли о возможности и необходимости расширения понятия целого числа в связи с поиском алгоритмов решения сравнений второй степени. Он перенес понятие целого числа на числа вида , где — произвольные целые числа, а — является корнем уравнения На данном множестве К. Гаусс впервые построил теорию делимости, аналогичную теории делимости целых чисел. Он обосновал справедливость основных свойств делимости; показал, что в кольце комплексных чисел существует только четыре обратимых элемента: ; доказал справедливость теоремы о делении с остатком, теоремы о единственности разложения на простые множители; показал какие простые натуральные числа останутся простыми и в кольце ; выяснил природу простых целых комплексных чисел.

Развитая К. Гауссом теория, описанная в его труде «Арифметические исследования», явилась фундаментальным открытием для теории чисел и алгебры.

В выпускной работе были поставлены следующие цели:

1. Развить теорию делимости в кольце чисел Гаусса.

2. Выяснить природу простых гауссовых чисел.

3. Показать применение гауссовых чисел при решении обычных диофантовых задач.

ГЛАВА 1. ДЕЛИМОСТЬ В КОЛЬЦЕ ЧИСЕЛ ГАУССА.

Рассмотрим множество комплексных чисел. По аналогии с множеством действительных чисел в нем можно выделить некоторое подмножество целых чисел. Множество чисел вида , где назовем целыми комплексными числами или гауссовыми числами. Нетрудно проверить, что для этого множества выполняются аксиомы кольца. Таким образом, это множество комплексных чисел является кольцом и называется кольцом целых чисел Гаусса . Обозначим его как , так как оно является расширением кольца элементом: .

Поскольку кольцо гауссовых чисел является подмножеством комплексных чисел, то для него справедливы некоторые определения и свойства комплексных чисел. Так, например, каждому гауссовому числу соответствует вектор с началом в точке и с концом в . Следовательно, модуль гауссова числа есть . Заметим, что в рассматриваемом множестве, подмодульное выражение всегда есть число неотрицательное целое. Поэтому в некоторых случаях удобнее пользоваться нормой , то есть квадратом модуля. Таким образом . Можно выделить следующие свойства нормы. Для любых гауссовых чисел справедливо:

(1)

(2)

(3)

(4)

(5)

Здесь и далее — множество натуральных чисел, то есть целых положительных чисел.

Справедливость данных свойств тривиальным образом проверяется с помощью модуля. Попутно заметим, что (2), (3), (5) справедливы и для любых комплексных чисел.

Кольцо гауссовых чисел — это коммутативное кольцо без делителей 0, так как оно является подкольцом поля комплексных чисел. Отсюда следует мультипликативная сократимость кольца , то есть

(6)

1.1 ОБРАТИМЫЕ И СОЮЗНЫЕ ЭЛЕМЕНТЫ.

Посмотрим, какие гауссовы числа будут обратимыми. Нейтральным по умножению является . Если гауссово число обратимо , то, по определению, существует такое, что . Переходя к нормам, согласно свойству 3, получим . Но эти нормы натуральны, следовательно . Значит, по свойству 4, . Обратно, все элементы данного множества обратимы, поскольку . Следовательно, обратимыми будут числа с нормой равной единице, то есть , .

Как видно не все гауссовы числа будут обратимы. Поэтому интересно рассмотреть вопрос делимости. Как обычно, мы говорим, что делится на , если существует такое, что .Для любых гауссовых чисел , а также обратимых справедливы свойства.

(7)

(8)

(9)

(10)

, где (11)

(12)

Легко проверяются (8), (9), (11), (12). Справедливость (7) следует из (2), а (10) следует из (6). В силу свойства (9), элементы множества ведут себя по отношению к делимости точно так же как и , и называются союзными с . Поэтому естественно рассматривать делимость гауссовых чисел с точностью до союзности. Геометрически на комплексной плоскости союзные числа будут отличаться друг от друга поворотом на угол кратный .

1.2 ДЕЛЕНИЕ С ОСТАТКОМ.

Пусть надо поделить на , но невозможно произвести деление нацело. Мы должны получить , и при этом должно быть «мало». Тогда покажем, чту брать в качестве неполного частного при делении с остатком во множестве гауссовых чисел.

К-во Просмотров: 515
Бесплатно скачать Дипломная работа: Кольцо целых чисел Гаусса