Дипломная работа: Кольцо целых чисел Гаусса

В кольце возможно деление с остатком, при котором остаток меньше делителя по норме. Точнее, для любых и найдется такое, что . В качестве можно взять ближайшее к комплексному числу гауссово число.

Доказательство.

Разделим на во множестве комплексных чисел. Это возможно, так как множество комплексных чисел является полем. Пусть . Округлим действительные числа и до целых, получим соответственно и . Положим . Тогда

.

Умножая сейчас обе части неравенства на получим, в силу мультипликативности нормы комплексных чисел, что . Таким образом, в качестве неполного частного можно взять гауссово число , которое как нетрудно видеть, является ближайшим к .

Ч.Т.Д.

1.3 НОД. АЛГОРИТМ ЕВКЛИДА.

Мы пользуемся обычным для колец определением наибольшего общего делителя. НОД’ом двух гауссовых чисел называется такой их общий делитель, который делится на любой другой их общий делитель.

Как и во множестве целых чисел, во множестве гауссовых чисел для нахождения НОД пользуются алгоритмом Евклида.

Пусть и данные гауссовы числа, причем . Разделим с остатком на . Если остаток будет отличен от 0, то разделим на этот остаток, и будем продолжать последовательное деление остатков до тех пор, пока оно будет возможно. Получим цепочку равенств:

, где

, где

, где

……………………….

, где

Эта цепочка не может продолжаться бесконечно, так как имеем убывающую последовательность норм, а нормы — неотрицательные целые числа.

Теорема 2. О существовании НОД.

В алгоритме Евклида, примененному к числам Гаусса и последний ненулевой остаток есть НОД().

Доказательство.

Докажем, что в алгоритме Евклида действительно получаем НОД.

1.Рассмотрим равенства снизу вверх.

Из последнего равенства видно, что .Следовательно, как сумма чисел делящихся на . Так как и , то следующая строчка даст . И так далее. Таким образом, видно, что и . То есть это общий делитель чисел и .

Покажем, что это наибольший общий делитель, то есть делится на любой другой их общий делитель.

2. Рассмотрим равенства сверху вниз.

Пусть — произвольный общий делитель чисел и . Тогда , как разность чисел делящихся на , действительно из первого равенства . Из второго равенства получим, что . Таким образом, представляя в каждом равенстве остаток как разность чисел делящихся на , мы из предпоследнего равенства получим, что делится на .

Ч.Т.Д.

Лемма 3. О представлении НОД.

Если НОД(, )=, то существуют такие целые гауссовы числа и , что .

Доказательство.

Рассмотрим снизу вверх цепочку равенств, полученную в алгоритме Евклида. Последовательно подставляя вместо остатков их выражения через предыдущие остатки, мы выразим через и .

Ч.Т.Д.

Гауссово число называется простым , если его нельзя представить в виде произведения двух необратимых сомножителей. Следующее утверждение очевидно.

Утверждение 4.

При умножении простого гауссова числа на обратимое снова получается простое гауссово число.

Утверждение 5.

К-во Просмотров: 516
Бесплатно скачать Дипломная работа: Кольцо целых чисел Гаусса