Дипломная работа: Кольцо целых чисел Гаусса
Произведение чисел представимых в виде суммы двух квадратов также представимо в виде суммы двух квадратов.
Доказательство.
Докажем этот факт двумя способами, с помощью чисел Гаусса, и не используя гауссовы числа.
1. Пусть , — натуральные числа представимые в виде суммы двух квадратов. Тогда , и . Рассмотрим произведение , то есть представили в виде произведения двух сопряженных гауссовых чисел, которое представляется в виде суммы двух квадратов натуральных чисел.
2. Пусть , . Тогда
.
Ч.Т.Д.
Утверждение.
Если , где — простое натуральное вида , то и .
Доказательство.
Из условия следует, что и при этом — простое гауссово. Тогда по лемме Евклида на делится один из множителей. Пусть , тогда по лемме 10 имеем, что и .
Ч.Т.Д.
Опишем общий вид натуральных чисел представимых в виде суммы двух квадратов.
Рождественская теорема Ферма или теорема Ферма — Эйлера.
Ненулевое натуральное число представимо в виде суммы двух квадратов тогда, и только тогда, когда в каноническом разложении все простые множители вида входят в четных степенях.
Доказательство.
Заметим, что 2 и все простые числа вида представимы в виде суммы двух квадратов. Пусть в каноническом разложении числа есть простые множители вида , входящие в нечетной степени. Занесем в скобки все множители представимые в виде суммы двух квадратов, тогда останутся множители вида , причем все в первой степени. Покажем, что произведение таких множителей не представимо в виде суммы двух квадратов. Действительно, если допустить, что , то имеем, что должен делить один из множителей или , но если делит одно из этих гауссовых чисел, то оно обязано и делить другое, как сопряженное к нему. То есть и , но тогда должно быть во второй степени, а оно в первой. Следовательно, произведение любого числа простых множителей вида первой степени не представимо в виде суммы двух квадратов. Значит наше предположение не верно и все простые множители вида в каноническом разложении числа входят в четных степенях.
Ч.Т.Д.
Задача 1.
Посмотрим применение данной теории на примере решения диафантова уравнения.
Решить в целых числах .
Заметим, что правая часть представима в виде произведения сопряженных гауссовых чисел.
То есть . Пусть делится на некоторое простое гауссово число , и на него делится и сопряженное, то есть . Если рассмотреть разность этих гауссовых чисел, которая должна делиться на , то получим, что должно делить 4. Но , то есть союзно с .
Все простые множители в разложении числа входят в степени кратной трем, а множители вида , в степени кратной шести, так как простое гауссово число получается из разложения на простые гауссовы 2, но , поэтому . Сколько раз встречается в разложении на простые множители числа , столько же раз и встречается в разложении на простые множители числа . В силу того, чт?