Дипломная работа: Конструктивное усовершенствование шасси самолета Ту-154 на основе анализа эксплуатации

После определения интенсивности отказов определяем вероятность безотказной работы элементов и узлов шасси как для невосстанавливаемой системы за время типового полета, равное 3 часа. Результаты сводим в таблицу 1.3.

Таблица 1.3. Значения вероятности безотказной работы элементов гидросистемы

п/п

Наименование элемента Время полета, ч.
1. КТ-141Е
2. КН-10
3. УА-51Б
4. РДЦ
5. АмортстойкаОНШ
6. АмортстойкаПНШ
7. Замок убранного положения ОНШ
8. Замок убранного положения ПНШ

По результатам расчетов Р(t) строим графики изменения вероятности безопасности работы элементов гидросистемы за время типового полета t=3ч. (Рис.1.2)

1.3 Конструктивные усовершенствования шасси самолета Ту-154

При разработке конструктивных усовершенствований использовались: опыт эксплуатации шасси Ту-154, изучение технической литературы, информационный и патентный поиск.

В дипломном проекте произведены следующие конструктивные усовершенствования элементов шасси:

- усовершенствование тормозных дисков колес с заменой материала дисков и корпуса тормоза, оптимизация потока охлаждающего воздуха через тормоз;

- усовершенствование тормозного цилиндра;

- разработка бескамерного барабана тормозного колеса с разъемным корпусом с заменой материала;

- усовершенствование шарнирного узла шасси;

- усовершенствование замка убранного положения основной ноги шасси (ОНШ);

- усовершенствование устройства для перетекания жидкости в пневмогидравлическом амортизаторе передней опоры.

1.3.1 Усовершенствование тормозного цилиндра

У самолета Ту-154 в блоке цилиндров размещены 12 тормозных цилиндров с поршнями, 8 узлов растормаживания и 4 регулятора зазора цангового типа. Для уменьшения массы тормозного устройства в дипломном проекте предлагается тормозной узел [3], содержащий в себе три агрегата: гидроцилиндр с поршнем, узел растормаживания и регулятор зазора. Регулирование зазора происходит следующим образом. При выработке тормозных дисков нажимной цилиндр 59 уходит все дальше и дальше времени он начнет передвигать вправо втулку 55, которая будет насаживать втулку 57 на шаровую опору 56. В результате чего разжимается пружина 58 в незаторможенном положении устройства, поэтому при растормаживании нажимной цилиндр 59 уходит влево, не достигая своего прежнего положения. Вследствие чего поддерживается постоянный зазор между нажимным диском и тормозным пакетом.

1.3.1.1 Проверочный расчет тормозного устройства

Величина потребного эксплуатационного тормозного момента определяется с прототипа тормозного устройства самолета Ту-154.

(1.11.)

где μТ =0.3 – коэффициент трения фрикционной пары прототипа (материал МКВ-50А-4НМХ);

SТ – осевое усилие сжатия;

RТ – радиус трения тормозных дисков;

nТ =10 – количество пар поверхностей трения.

Определим осевое усилие сжатия:

(H), (1.12.)

где DП =0.017 м – диаметр поршня торможения;

nП =12 – количество поршней торможения;

PТ =11МПа – рабочее давление в тормозной системе.

Определим радиус трения в тормозных дисках RТ :

К-во Просмотров: 512
Бесплатно скачать Дипломная работа: Конструктивное усовершенствование шасси самолета Ту-154 на основе анализа эксплуатации